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Time-Optimal Rotational Motion 
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S U M M A R Y  
Pontryagin's maximum principle is used to solve the problem of bringing a rotating rigid body to rest in minimum 
time. 

1. Introduction 

Application of the Pontryagin maximum principle leads, in most problems of practical interest, 
to a two-point boundary-value problem with its attendant computational difficulties. It is 
important in such cases to have rapid methods of obtaining near-optimal solutions, and also 
to obtain an estimate of the error in such solutions. 

The problem of bringing a rotating rigid body to rest in minimum time is used as an example 
to show how the method of "backing out of the origin" may be used to obtain a number of 
optimal trajectories. (We shall refer to trajectories obtained in this way as trial trajectories.) 
An initial set of trial trajectories is used as a guide to obtaining further trial trajectories, the 
latter passing closer to the desired initial point in state space. This process is repeated, if neces- 
sary, until a set of initial values of the adjoint variables, already used in a trial trajectory, can 
be combined with the given initial set of state variables to give an acceptably accurate near- 
optimal trajectory. 

2. Formulation of the Problem 

The general rotational motion of a rigid body is described by the equations 

A p -  ( B -  C)qr = L ,  (1) 
Bft - ( C -  A)rp = M ,  (2) 
C ~ - ( A - B ) p q  = N ,  (3) 

where A, B, C are the principal moments of inertia at the centre of mass, p, q, r are the compo- 
nents of angular velocity about the corresponding principal axes, and L, M, N are the externally 
applied moments about these axes. The initial conditions are 

t = t o ,  P=Po,  q = q o ,  r = r  o, 

and the final conditions are 

t = t l ,  p = q = r = O .  

It is assumed that L, M, N are bounded, as follows : 

ILl < L,~, (4) 
Mt<=M<=M,, (5) 
INI < Nm, (6) 

where Mz < 0 and M, > 0. This type of control is common on aircraft, where the ailerons and 
rudder are bounded symmetrically and the elevator is bounded asymmetrically. (It is hoped 
later to increase the number and complexity of the equations of motion so that they will 
represent, for example, a spinning aircraft.) 
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The problem to be considered is that of finding L, M, N such that the transfer time t 1 - t o is 
minimised. 

3. Application of the Maximum Principle 

It is convenient to write equations (1), (2), (3) in the form 

= aqr + U l ,  (7) 

(I = brp + u2 , (8) 
i" = cpq + u 3 ,  (9) 

where 

a = ( B -  C) /A ,  b = ( C -  A ) / B ,  c = ( A -  B ) / C ,  

ul  = L / A ,  u 2 =  M / B ,  u 3 =  N / C  . 

In this notation, equations (4), (5), (6) are written 

lull _-< Ulm, (10) 
Uzl_-- < U2 < U2,, (1t) 

lu31 < u3, . .  (12) 

In order to apply the Pontryagin maximum principle, [1], [2], we require the variational 
Hamiltonian 

�9 3/f(~, 0~, u)--- 2 o + 2 1 ( a q r + u l ) + 2 2 ( b r p + u 2 ) + 2 3 ( c p q + u 3 ) ,  (13) 

where 

= (2o, 21, 22, 23), co = (p, q, r), u = (ul, u2, u3). 

The maximum principle then gives the following necessary conditions for optimality. 
If u* (t), for to < t < tl, is an optimal control, then there exists a nonzero, continuous function 

L(t), which is a solution of the adjoint equations 

~1 = - b r 2 2 -  cq23 ,  (14) 
}~2 = - cp23 - ar21 ,  (15) 

J~3 = - aq21 - bp22 , (16) 

and which satisfies the conditions 

sup~f(L(t), o)*(t), u ) =  Jf(L(t),  co*(t), u * ( t ) ) = 0 ,  (17) 
u ~ U  

20 (t) = constant < 0 ,  (18) 

U being the set of admissible controls determined by equations (10), (11), (i2). 
From equations (17) and (13), 

20 + 21 (aq* r* + u*) + 22 (br* p* + u*) + 2 a (cp* q* + u*) = 0,  (19) 

u* = ut,, sgn 21, (20) 

u* = �89 [(u2, + u2,) - (u21- u2,) sgn 22],  (21) 
u* = Uam sgn 23 . (22) 

Since the state variables p, q, r are fixed at t = to and at t = tl, the initial and final values of the 
adjoint variables are free, i.e. neither the initial nor final conditions for equations (14), (15), 
�9 (16) are known. Furthermore, since these equations are homogeneous in 21, 22, 23, we can as- 
sume without loss of generality that the final values of the variables satisfy 

121(tl)1 + 122(tl)1 + 123(tl)1 = 1. (23) 

In principle, all the quantities appearing in the calculation may now be determined. In 
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particular, we may from now on ignore equation (19), since it may be regarded as merely de- 
termining the value of 20. 

The equations to be solved are therefore (7), (8), (9), (14), (15), (16) and (20), (21), (22). The 
last three of these equations are used to eliminate ul, u2, u3 from the first three. However, it is 
still not possible to solve directly the resulting set of six equations, because we have two-point 
boundary-values for p, q, r and no boundary-values for 21, 22, 23. 

4. Optimal Trajectories 

In the situation described in the previous section it is always possible to obtain any number  of 
optimal trajectories by reversing the time variable [3] in equations (7), (8), (9) and (14), (15), (16). 
Specifically, we write 

z = tl - t (24) 

the new time variable z being the "time to go." The equations become 

[~ = - a q r -  u l ,  (25) 
(1 = - b r p -  u2 , (26) 

= - cpq - u 3 (27) 
and 

}~1 = brJ.2 + cq'~3 , (28) 
"~2 = cp23 + a r 2 1 ,  (29) 
}~3 = aq21 + bp22 . (30) 

(The dots now mean d/dr . )  The "initial" conditions are now 

z = 0 ,  p = q = r = O ,  

121(0)1 + 121(0)1 + I,~3 (0)1 = 1, (31) 

and the "final" conditions become 

z = t  1 - t o ,  P=Po ,  q = q o ,  r = r  o. (32) 

Suppose 21 (0), 22 (0), 23 (0) satisfying equation (31), are given. Then equations (25)-(30) may 
be solved by numerical integration, starting at z=0 ,  since ul, u2, u3 are given by equations 
(20), (21), (22). 

Unfortunately, it is most unlikely that the required set of"final" conditions (32) will be attain- 
ed after 21 (0), 22 (0), 23 (0) have been chosen more or less arbitrarily. The fundamental difficulty 
is that the state equations (7), (8), (9) are nonlinear. For the case of linear state equations, 
Neustadt [4], [5], [-6] has shown that the two-point boundary-value problem can be trans- 
formed into the problem of locating the point where a function of several variables takes its 
maximum value. Several methods are available for solving the latter problem, [7], [8]. 

The method used in the present paper for solving equations (25)-(30), while at the same time 
obtaining almost correct "final" conditions, is first to vary 21 (0), 22 (0), 23 (0) systematically, 
thus generating a set of trial trajectories. The "final" values P0, qo, ro on these trajectories are 
then used as a guide for further adjustments of 21 (0), 22 (0), 23 (0). 

It was hoped, finally, to interpolate for the correct values of 21 (0), 22 (0), 23 (0) using the end- 
points of these trial trajectories and the given initial values Po, qo, to. However, no completely 
satisfactory interpolation formulas could be found. Instead, the final trajectory is a near-optimal 
trajectory, obtained by integrating equations (7), (8), (9) and (14), (15), (16) forwards, the initial 
2-values being determined from the nearest trial trajectory. 

The accuracy of the method can always be increased, of course, by computing more trial 
trajectories. A measure of the final accuracy is given by the min imum value of the function 

f =  p2 + q2 + r 2 (33) 
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which, ideally, should be zero. 
Iffa, fb, fc are the values of f evaluated at three equally spaced times ta, tb, to, then quadratic 

interpolation gives 

(f~ - L )  2 
fmin ---- fb 8(fa__ 2fb + fc) , (34) 

a formula which is sufficiently accurate for the present purpose, provided that 

[tmi.--tbl/At ~ 1, 

where At is the constant time interval. The time tmi n is given by 

(f~-f~)At 
tmi n = t b + 2(fa_2fbWfci. (35) 

5. Numerical Example 

In equations (1), (2), (3)take 

A ' B : C = 3 : 8 " I O .  

Then, in equations (7), (8), (9), 

a = - 0 . 6 6 7 ,  b=0.875, c = - 0 . 5 0 0 .  

The bounds on the controls are taken to be 

ulm= 0.40, u21 = -0.20, u2u = 0.13, u3m = 0.14, 

and are intended to be representative values for an orthodox aircraft; 
After using equations (20), (21), (22), equations (25), (26), (27) become 

i0 = 0.667qr-0.40 sgn 21 , (36) 
O = -0.875rp+0.035-0.165 sgn 22, (37) 

= 0.500pq-0.14 sgn 23 �9 (38) 

Changing the sign of each term on the right-hand side of these equations gives the numerical 
form of equations (7), (8), (9). 

Rather than choose specific values for Po, qo, to, a more general investigation of the method 
was carried out. A set of trial trajectories were first computed, using the values +0.8 _+0.1, 
_+ 0.1 for 21 (0), 22 (0), 23 (0) in all possible combinations. Note that these values satisfy equation 

TABLE 1 

Initial trial trajectories 

Case 21(0) ~2(0) ~3(0) z = 5  

p q r 

1 0.8 0.1 0.1 -2.061 0.106 0.746 
2 0.8 0.1 -0 .1  -2.071 0.499 -0.716 
3 0.8 -0 .1  0.1 -2.019 0.469 0.162 
4 0.8 -0 .1  -0 .1  -2.162 -0.050 -0.713 
5 0.1 0.8 0.1 -1.908 0.985 -0.085 
6 0.1 0.8 -0 .1  - 1.917 0.954 -0.397 
7 0.1 0.1 0.8 - 2.048 0.283 0.741 
8 0.1 0.1 -0 .8  -2.113 0.067 -0.880 
9 0.1 -0 .1  0.8 0.717 --0.504 -0.732 

10 0.1 --0.1 -0 .8  -2.120 --0.462 -0.845 
11 0.1 -0 .8  0.1 -1.902 -1.034 0.376 
12 0.1 -0 .8  -0 .1  -1.827 --1.119 0.048 
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(31). This choice of "initial" 2's gives 24 trial trajectories aitogether, though examination of 
equations (25)-(30) shows that only half of these need actually be computed;  changing the 
signs of both 22 (0) and 23 (0) is equivalent to changing the signs of both p and r. 

The computation was performed on an Elliott 4130 computer, using F O R T R A N  IV and a 
Runge-Kutta subroutine to solve the differential equations. The time variable z was taken from 
0-5 secs. in steps of 0.1, and the total computing time for the 12 cases was about 5 minutes. The 
values of p, q, r at ~ = 5 are shown in Table 1. 

Similar results for the remaining 12 cases are easily written down. With the exception of Case 
9, p decreases steadily from zero to the neighbourhood of - 2. In these circumstances, the inter- 
polation of further trial trajectories is relatively easy. 

The switching sequences are, of course, known for these trial trajectories, since the adjoint 
variables 21, 22, 23 are computed at the same time as the state variables, p, q, r. 

Six more trial trajectories were interpolated between Cases 1 and 5. The values of p, q, r at 
= 5 for these trajectories are shown in Table 2. 

T A B L E  2 

Further trial trajectories 

Case xl(o) ~2(o) ~3(o) ~=5 

p q r 

25 0.7 0.2 O. 1 - 1.977 0.705 0.568 

26 0.6 0.3 0.1 - 1.915 0 .934 0.276 
27 0.5 0.4 0.1 - 1.904 0.977 0.127 

28 0.4 0.5 0.1 - 1.904 0.987 0.024 

29 0.3 0.6 0.1 - 1.905 0.987 - 0 .034 

30 0.2 0.7 0.1 - 1.907 0.985 - 0 .076 

By interpolating between two cases in this way, and repeating the process, if necessary, a small 
region of (p, q, r)-space can be saturated with trial trajectories. Initial values of 21, 22, 23 are 
then available for the integration of equations (14), (15), (16) and (7), (8), (9). 

To illustrate the effects of small errors in the initial values of 21, 22, 23 the following 52 near- 
optimal trajectories were computed, and the errors estimated by means of equation (34). 
Taking Case 1 above as the basic case, increments of _+0.01 (or zero) were applied to Po, %, ro 
in all possible ways (26 cases), and increments of _+ 0.02 (or zero) were similarly applied. Equa- 
tions (7), (8), (9) and (14), (15), (16) were solved for these 52 cases, using 

21(0) = 0.874, 22(0)= -0.029,  23(0)= - 0 . 1 8 5 ,  

these being the "final" values of the 2's from the trial trajectory of Case 1. The results are shown 
in Table 3. 

The symbols +,  - ,  0 denote the signs of the increments 6po, 6qo, 6ro to 

(Po, qo, ro)= (-2.061,  0.106, 0.746), 
and 

(Dmin = ( fmln)  ~ , 

where fmi~ is given by equation (34), with 

ta=4.90,  t b=5.00,  t c=5 .10 .  

Also, from equation (35), ~omi . occurs at time 

L - s  
tmin = 5 q- 

2O(L-  efb +L) ' 

which in all cases differs only very slightly from 5. The suffixes 1 and 2 on fDmi n indicate that the 
increments in Po, qo, ro are + 0.01 and + 0.02 respectively. 
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I n  o n l y  6 of  these  26 pa i r s  of  cases c a n  it  be  said tha t  the  e r ro r  in  the  f inal  va lue  of  co increases  

l inea r ly  wi th  the  in i t i a l  e r ro r  (as m e a s u r e d  b y  @o, c~qo, cSro), viz. Cases  g, h, j, 1, q, r. S om e t im es  
an  inc rease  in  the  in i t ia l  e r ro r  l eads  to  a decrease  in  the  f inal  e r ro r  (Cases a, t). 

TABLE 3 

Final errors in 52 near-optimal trajectories 

Case tSPo ~qo fifo (COmin)l (O)rnin)2 

a + 0 0 .021 .014 
b 0 + 0 .009 .034 
c 0 0 + .009 .028 
d 0 + + .015 .O44 
e + 0 + .008 .026 
f + + 0 .031 .079 
g + + + .036 .074 
h - 0 0 .023 .045 
i 0 - 0 .039 .063 
j 0 0 - .009 .018 
k 0 - - .043 .057 
1 - 0 - .026 .051 
m - - 0 .061 .091 
n - - - .064 .097 
o 0 + - .011 .032 
p 0 - + .037 .059 
q - 0 + .022 .044 
r + 0 - .020 .040 
s + - 0 .018 .021 
t - + 0 .013 .011 
u + + - .029 .073 
v + - + .018 .020 
w - + + .014 .020 
x + .023 .033 
y - + - .017 .021 
z - - + .059 .089 

A n  a t t e m p t  was  m a d e  to f ind  f o r m u l a s  for c~21 (0), 622 (0), c523 (0) i n  t e rms  of  P0, qo, ro a n d  
6po, c~qo, cSro. However ,  n o  consistently re l iab le  f o r m u l a s  have  b e e n  found ,  a n d  it is c o n c l u d e d  
tha t  the  va lues  of  ,~1 (0), ~2 (0), 23(0) w h i c h  s h o u l d  be  used  as in i t ia l  c o n d i t i o n s  for e q u a t i o n s  
(14), (15), (16) are  those  f rom the  nea res t  t r ia l  t ra jec tory ,  i.e. the  one  for wh ich  

(@o) 2 + (fiqo) 2 + (firo) 2 

is least. 

6. Conclusions 

The  classical  t w o - p o i n t  b o u n d a r y - v a l u e  p r o b l e m  wh ich  occurs  in  the  s o l u t i o n  of  o p t i m i s a t i o n  
p r o b l e m s  m a y  s o m e t i m e s  be  a v o i d ed  b y  the  device  of  revers ing  the  t ime  va r i ab l e  in  the  gove rn -  
ing  different ia l  equa t ions .  I t  is s h o w n  tha t  this  m e t h o d  m a y  be u sed  successful ly in  a p rac t ica l  
p r o b l e m  ( t ime-op t ima l  r o t a t i o n a l  m o t i o n )  w h e n  it  is re la t ive ly  easy  to c o m p u t e  reversed  opt i -  
m a l  t ra jector ies ,  a n d  a n  exact  s o l u t i o n  is n o t  requi red .  

T h e  e r ro r  in  the  f inal  n e a r - o p t i m a l  t r a j ec to ry  is assessed b y  d e t e r m i n i n g  h o w  closely the  g iven  
t e r m i n a l  c o n d i t i o n s  a re  satisfied. S ince  the  m e t h o d  d e p e n d s  o n  c o n s t r u c t i n g  t r ia l  t r a jec tor ies  
wh ich  s teadi ly  a p p r o a c h  the  r equ i r ed  o p t i m a l  t ra jec tory ,  the  e r rors  in  the  f inal  t r a j ec to ry  can,  

wi th  sufficient  c o m p u t a t i o n ,  be  m a d e  a rb i t r a r i l y  small .  
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